Brakes Calculations

Useful Links:
Vehicle Dynamics & Control - 17 Acceleration and braking performance

 

Newest FBDs:

 

%MatLab Code clear all; clc; % GIVENS a = 4.91; % braking deceleration (abs val, m/s^2) m_r = 20; % mass of rear wheel (kg) m_c = 120; % mass of chassis (kg) m_f = 20; % mass of front wheel (kg) m_tot = m_r + m_c + m_f; r_w = 0.20; % radius of wheel (m) I_r = 0.5*m_r*(r_w^2); % moment of inertia (rear wheel) I_f = 0.5*m_r*(r_w^2); % moment of inertia (front wheel) mu = 0.0055; d_rear = 1; % horizontal distance from CoG to rear wheel d_front = 1; % horizontal distance from CoG to front wheel h = 0.5; % height from chassis to CoG thetaDeg = 0; % incline (degrees) theta = thetaDeg*pi/180; % incline (radians) alpha = a/r_w; g = 9.81; % SOLUTION 1: SOLVING JUST WEIGHT TRANSFER, NORMAL FORCES, AND TORQUE % (STEP-BY-STEP SOLUTION) A = [ 1, 1; -d_rear, d_front; ]; B = [ m_tot*g*cos(theta); m_tot*a*h; ]; sol = linsolve(A,B); F_N_r = sol(1); F_N_f = sol(2); F_rc_y = F_N_r - m_r*g*cos(theta); F_fc_y = m_c*g*cos(theta) - F_rc_y; F_r_r = F_N_r * mu; F_r_f = F_N_f * mu; F_rc_x = I_r*a/(r_w^2)+m_r*a; F_fc_x = m_c*a+ F_rc_x; T = I_f*a/r_w + m_f*a*r_w + F_fc_x*r_w; fprintf("SOLUTION 1\n"); fprintf("F_N_r: %f\n", F_N_r); fprintf("F_N_F: %f\n", F_N_f); fprintf("F_rc_y: %f\n", F_rc_y); fprintf("F_fc_y: %f\n", F_fc_y); fprintf("F_rc_x: %f\n", F_rc_x); fprintf("F_fc_x: %f\n", F_fc_x); fprintf("T: %f\n\n", T); % SOLUTION 2: SOLVING ENTIRE SYSTEM AT ONCE (9 EQNS, 9 UNKNOWNS) % F_rc_x, F_rc_y, F_N_r, F_f_r, F_fc_x, F_fc_y, F_N_f, F_f_f, T eqns = [ 1, 0, mu, 1, 0, 0, 0, 0, 0; 0, -1, 1, 0, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0, 0; 1, 0, 0, 0, -1, 0, 0, 0, 0; 0, 1, 0, 0, 0, 1, 0, 0, 0; 0, -d_rear,0, 0, 0, d_front,0, 0, 0; 0, 0, 0, 0, -1, 0, mu, 1, 0; 0, 0, 0, 0, 0, -1, 1, 0, 0; 0, 0, 0, 0, -r_w, 0, 0, 0, 1; ]; constants = [ m_r*a + m_r*g*sin(theta); % eqn 1 RHS m_r*g*cos(theta); % eqn 2 RHS I_r*a/(r_w^2) + m_r*a + m_r*g*sin(theta); % eqn 3 RHS -m_c*a - m_c*g*sin(theta); % eqn 4 RHS m_c*g*cos(theta); % eqn 5 RHS m_c*a*h; % eqn 6 RHS m_f*a + m_f*g*sin(theta); % eqn 7 RHS m_f*g*cos(theta); % eqn 8 RHS I_f*a/r_w + m_f*a*r_w + m_f*g*sin(theta); % eqn 9 RHS ]; solution = linsolve(eqns, constants); fprintf("SOLUTION 2\n"); fprintf("F_rc_x: %f\n", solution(1)); fprintf("F_rc_y: %f\n", solution(2)); fprintf("F_N_r: %f\n", solution(3)); fprintf("F_f_r: %f\n", solution(4)); fprintf("F_fc_x: %f\n", solution(5)); fprintf("F_fc_y: %f\n", solution(6)); fprintf("F_N_f: %f\n", solution(7)); fprintf("F_f_f: %f\n", solution(8)); fprintf("T: %f\n", solution(9)); 7:14 Sorry for the delay, that's the matlab code. Solution 1 is the step-by-step one, where you just need 3 eqns to get the torque, and solution 2 is the 9-eqns at the same time solution. 7:14 Here's the output: 7:14 SOLUTION 1 F_N_r: 588.400000 F_N_F: 981.200000 F_rc_y: 392.200000 F_fc_y: 785.000000 F_rc_x: 147.300000 F_fc_x: 736.500000 T: 176.760000 SOLUTION 2 F_rc_x: 147.300000 F_rc_y: 441.300000 F_N_r: 637.500000 F_f_r: -52.606250 F_fc_x: 736.500000 F_fc_y: 735.900000 F_N_f: 932.100000 F_f_f: 829.573450 T: 176.760000

Google Sheet Link: https://docs.google.com/spreadsheets/d/1emCQpfTXff3dAr8s4W90xkS2jfdpFnwxZciVqpC97YI/edit?usp=sharing