Parking Brake Calculations
# Calculating Static Friction (for a 9.5 inch rotor)
import math
#variables
m = 297 #kg
g = 9.81 #m/s^2
r_wheel = 0.2792 #m
r_rotor_effective = 0.1048004 #m
mu = 0.42
ff_max = m*g*math.sin(0.191986)
ff_bp = (ff_max*r_wheel)/r_rotor_effective
f_clamp = ff_bp/mu
t_brake_req = ff_bp * r_rotor_effective
t_brake_per_wheel = t_brake_req/2
print(f"Braking torque required per wheel is {t_brake_per_wheel}")
# Calculating Actual Braking Torque Achieved (for an 9.5 inch rotor)
braking_radius_in = 4.126
lever_force_lbs = 65
t_brake_actual = 2.69*braking_radius_in*lever_force_lbs
t_brake_nm = t_brake_actual*(0.11298482933333)
print(f'Theoretical braking torque generated per wheel is {t_brake_nm} N/m')
# Calculations for ASC Regulation 10.6A (must be able to withstand pushing force of 10% of vehicles weight when parking brake is activated)
m = 297 #kg
f_push = 0.1*m*9.81
effective_rotor_radius = 0.1048004 #m
t_brake_actual = 163.021539 #n/m
f_brake = t_brake_actual / effective_rotor_radius
print(f"Braking force generated is {f_brake} per wheel")