...
The geometry of the simulation fed into SimScale differs from the illustrative geometry shown above the model. The geometry has been halved, and the tail end of the flow region has been lengthened to allow for total resolution of fluid flow. This allows any air jets, vortices, convection zones, etc to combine, mix and homogenize.
The source of the geometry is a Solidworks assembly called [name] using design tables to generate configurations. Currently, all configurations have been generated, and to use one, one must only select the correct configuration, rebuild the geometry, and save the file.
...
In a steady-state simulation, any set of initial conditions will (theoretically) lead to the same result[citation needed]. As such, we will use a set of initial conditions very close to the theoretical end results calculated with other simulations for faster “convergence”, the condition when the imbalances in mass, energy, and other conserved quantities in the simulation drop below a critical threshold.
As such, change the following variables:
...
Running a mesh independence study is useful to assess if the results of the simulation are “independent” from the mesh fineness level by simulating with progressively finer meshes and comparing their results. At some point, results (especially thermal probe point results) should start to “converge” “converge” between mesh fineness levels. The simulationist should find the coarsest mesh possible with still accurate results with a given geometry and use it as the base mesh for future simulations.
...